causalexplain.generators package#
Submodules#
Acyclic Graph Generator.
Generates a dataset out of an acyclic FCM. Author : Olivier Goudet and Diviyan Kalainathan
Minor update: J. Renero (due to pandas changes to as_matrix()), and bug fix in polynomial mechanism.
- class AcyclicGraphGenerator(causal_mechanism, initial_variable_generator=<function gmm_cause>, points=500, nodes=20, timesteps=0, parents_max=5, verbose=False)[source]#
Bases:
object
Generates a cross-sectional dataset out of a cyclic FCM.
Methods
generate
([rescale])Generate data from an FCM containing cycles.
Redefine the causes of the graph.
to_csv
(fname_radical, **kwargs)Save data to the csv format by default, in two separate files.
- __init__(causal_mechanism, initial_variable_generator=<function gmm_cause>, points=500, nodes=20, timesteps=0, parents_max=5, verbose=False)[source]#
- Params:
@param:initial_variable_generator(points): init variables of the graph @param:causal_mechanism(causes): generating causes in the graph to
choose between: [‘linear’, ‘polynomial’, ‘sigmoid_add’, ‘sigmoid_mix’, ‘gp_add’, ‘gp_mix’]
Defining a set of classes that represent causal functions/ mechanisms.
- class LinearMechanism(ncauses, points, d=4, noise_coeff=0.7, verbose=False)[source]#
Bases:
object
Linear mechanism, where Effect = alpha*Cause + Noise.
Methods
__call__
(causes[, verbose])Run the mechanism.
- class Polynomial_Mechanism(ncauses, points, d=2, noise_coeff=0.7, verbose=False)[source]#
Bases:
object
Methods
__call__
(causes[, verbose])Run the mechanism.
mechanism
- class SigmoidAM_Mechanism(ncauses, points, d=4, noise_coeff=0.7, verbose=False)[source]#
Bases:
object
Methods
__call__
(causes[, verbose])Run the mechanism.
mechanism
- class SigmoidMix_Mechanism(ncauses, points, d=4, noise_coeff=0.7, verbose=False)[source]#
Bases:
object
Methods
__call__
(causes[, verbose])Run the mechanism.
mechanism