Source code for causalexplain.estimators.notears.trace_expm
import torch
import numpy as np
import scipy.linalg as slin
[docs]
class TraceExpm(torch.autograd.Function):
[docs]
@staticmethod
def forward(ctx, input):
# detach so we can cast to NumPy
E = slin.expm(input.detach().numpy())
f = np.trace(E)
E = torch.from_numpy(E)
ctx.save_for_backward(E)
return torch.as_tensor(f, dtype=input.dtype)
[docs]
@staticmethod
def backward(ctx, grad_output):
E, = ctx.saved_tensors
grad_input = grad_output * E.t()
return grad_input
trace_expm = TraceExpm.apply
[docs]
def main():
input = torch.randn(20, 20, dtype=torch.double, requires_grad=True)
assert torch.autograd.gradcheck(trace_expm, input)
input = torch.tensor([[1, 2], [3, 4.]], requires_grad=True)
tre = trace_expm(input)
f = 0.5 * tre * tre
print('f\n', f.item())
f.backward()
print('grad\n', input.grad)
if __name__ == '__main__':
main()